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ABSTRACT: EDF periodically performs in-service inspections of passive components within its electric
power plants in order to ensure that their degradation is lower than a critical level and to guarantee the safety and
the availability of the installations. These examinations allow to collect successive degradation measurements
data (crack sizes) for the components. Unfortunately, these data are incomplete. First, small cracks with size
below a specific known threshold may be detected without possible measurement. In that case, the only available
information hence is: presence of a crack with size below the threshold. Secondly, one single measurement
can be performed by an examination and, in case of several competing cracks on one component, the process
cannot measure all cracks sizes but only the largest one (which is not necessarily the same throughout the whole
component lifetime) if its size exceeds the previous threshold. However, even if they are not measured, all cracks
are detected, so that, in that case, the available information is: number of cracks, size of the largest one. Taking
into account this partial information, a specific stochastic model is proposed. In this model, cracks initiate
following a Poisson process and propagate according to gamma processes. Parametric estimation procedures
are developped, tested on simulated data and then applied to the industrial data. The fitted model is next used to
make some prediction over the future degradation propagation and over the residual operation time upon which
a critical degradation level is reached.

1 INDUSTRIAL CONTEXT, OBJECTIVE AND
DATA

1.1 Industrial context

EDF, one of the world’s leading electric utilities, peri-
odically performs in-service inspections of the pas-
sive components within its electric power plants in
order to ensure that their degradation is lower than
a critical level and guarantee the safety and the avail-
ability of the installations. These examinations allow
to monitor the degradation of the components by col-
lecting successive degradation measurements (for in-
stance crack sizes) from which one can predict the
degradation propagation and estimate the residual op-
eration time upon which the critical degradation level
will be reached.

Unfortunately, the non-destructive testing
processes (for instance ultrasonic testing processes)
do not always give a perfect image of the degradation.
Indeed, because of technical limitations, if a crack
size is too small, the measurement process can detect

the existence of the crack but is not able to give a
value for its size: the crack is said to be non-sizable.
Moreover, if several competing cracks have initiated
on a component, the testing process can count the
number of existing cracks but can only give the
size of the largest one, which is not necessarily the
same throughout the whole operation period of the
component.

Of course, in order to make accurate degradation
predictions, it is essential to take into account this par-
tial information coming from the field. That is why
the Université de Pau et des Pays de l’Adour and EDF
R&D developed a specific stochastic model to tackle
this issue.

1.2 Main objectives

The aim of the paper is to detail the model and to il-
lustrate its application on a real industrial case study
carried out on a passive component from EDF electric
power plants. This passive component is subjected to
internal crack initiation and propagation. That is why



examinations are regularly performed on this compo-
nent to monitor the crack size and predict the residual
operation time upon which a given regulatory limit,
denoted by `, will be reached. Two testing processes
with different objectives and performances are used.

1. The first process aims at detecting cracking: thus
it gives a binary response "presence" or "absence
of cracking", together with the number of initi-
ated cracks.

2. The second one is conceived to measure crack
sizes. Of course, the measurement first requires
the detection of the crack by the process, which
is less sensitive than the first one. A crack is
sizeable by this second testing process if its size
is larger than a fixed threshold. Due to the use
of two different technologies for the measure-
ments, there are two different possible (known)
thresholds under which the crack is non size-
able, which are denoted by c1 and c2, respec-
tively. Moreover, as previously mentioned, when
several cracks have initiated, the second testing
process can only give the size of the largest one
at the inspection time.

We make the assumptions that the two testing
processes give the exact number of initiated cracks
when they detect cracking and that the second testing
process gives the exact size of the largest crack when
sizeable.

1.3 Available data

The available data are the following.

• 228 components are studied. They are supposed
to be independent and identical.

• The commission date of each component is
known.

• Tests are performed at different inspection times
with one of the two testing processes, thus pro-
viding one of the possible following information
about the degradation level:

– No crack is detected on the component:
no cracking has initiated at the inspection
time.

– At least one crack is detected by the first
testing process at the inspection time: the
number of initiated cracks is known and the
size of the largest crack is lower than c1
(left censoring).

– At least one crack is detected by the sec-
ond testing process at the inspection time:
the number of initiated cracks is known, but
the size of the largest crack is lower than
c2 and is hence non-sizeable (left censoring
again).

– The second testing process detects and
measures cracking: the number of initiated
cracks is known, as well as the size for the
largest crack on the component (which is
higher than c2).

2 STOCHASTIC MODEL AND ESTIMATION
PROCEDURE

2.1 Stochastic model

We here specify the stochastic model for the initiation
and propagation of cracks on one single component.
We first set Nt to be the random number of cracks al-
ready initiated at time t on the component. The points
of the counting process (Nt)t≥0 stand for the initiating
times of cracks on the component and are denoted by
T1, . . . , Tn, . . . , with 0 < T1 < · · · < Tn < · · · (almost

surely). In caseNt ≥ 1, we set Z
(i)
t to be the (random)

size of the i-th crack at time t, with 1 ≤ i ≤ Nt. The
size of the largest crack at time t hence is:

Zt =

{
max
1≤i≤Nt

(
Z
(i)
t

)
if Nt ≥ 1,

0 elsewhere.

If 0 ≤ t1 < · · · < tm are the inspection times of
the component (different from one component to an-
other), data for one component are (nj, zj)1≤j≤m with

nj = Ntj (ω), zj = Ztj (ω). These data correspond to

one observation of
(
Ntj ,Ztj

)
1≤j≤m.

In order to account for the two possible levels of
censoring at time t, we set Ct ∈ {c1, c2} to be the
(known) censoring level at time t. We also introduce
a censoring indicator:

Dt =

{
0 if Zt ≤ Ct,
1 otherwise,

The data are now of the shape (nj, uj, dj)1≤j≤m
with nj = Ntj (ω), uj = Utj (ω), dj = Dtj (ω),
and correspond to one observation of(
Ntj ,Utj ,Dtj

)
1≤j≤m with

Ut =

{
Zt if Zt > Ct,
Ct if Zt ≤ Ct and Nt > 0,
0 otherwise.

Assumptions
We assume that the cracking processes are identical
for all the components and that they are independent
between components. We also assume that once ini-
tiated, the processes defining the propagation of all
cracks present on one component are independent
and identically distributed. For each component, the
number of cracks follows a Poisson process (Nt)t≥0,
where Nt is Poisson distributed with parameter Λ (t)
and distribution denoted byP (Λ (t)), see Ross (1996)



for more details on Poisson processes. In the sequel,
we either suppose that this process is homogeneous
(HP) with Λ (t) = λt, or non homogeneous (NHP)
with Λ (t) = αtβ (power-law process). The rate of this
Poisson process is denoted by λ (t), with λ (t) = λ for
the HP process and λ (t) = Λ′ (t) = αβtβ−1 for the
NHP process. When a crack appears, we assume that
its size grows according to a Gamma process with
parameters (A (t) , b), see Abdel-Hameed (1975) or
Van Noortwijk (2009) for more details on the use of
Gamma processes for modelling deterioration. Here
again, we envision the homogeneous case (HG) with
A (t) = at and the non homogenous case (NHG) with
A (t) = ηtγ .

To specifically define the sizes of the various cracks
present on a component at time t, we introduce a se-
quence

(
X(i)

)
i∈N∗ of independent Gamma processes,

all with parameters (A (t) , b). For each i ∈ N∗ and

each t ≥ 0, the random variable X
(i)
t is Gamma

distributed with probability density function (p.d.f.)
fA(t),b given by

fA(t),b (x) =
bA(t)

Γ (A (t))
xA(t)−1e−bx1R+ (x)

and cumulative distribution function (c.d.f.) denoted

by FA(t),b. With these notations, we have E
(
X
(i)
t

)
=

A (t)/b and var
(
X
(i)
t

)
= A (t)/b2.

For each i ∈ N∗, we next set

Z
(i)
t = X

(i)

(t−Ti)+

where (t− Ti)+ = max (t− Ti,0). If the i-th crack
has already been initiated at time t, we have

(t− Ti)+ = t− Ti and (t− Ti)+ stands for the time
elapsed between the initiation time of the i-th crack

and time t. Therefore, Z
(i)
t = X

(i)
t−Ti is the size of the

i-th crack at time t. On the contrary, if Ti > t, we ob-

tain (t− Ti)+ = 0 and Z
(i)
t = X

(i)
0 = 0. In each case,

Z
(i)
t hence is nothing but the size of the i-th crack at

time t.
As only the largest crack can be measured by an

examination, without censoring, a measure at time t
hence is an observation of

Zt = max
i∈N∗

(
Z
(i)
t

)

=

{
max
1≤i≤Nt

(
Z
(i)
t

)
= max

1≤i≤Nt

(
X
(i)
t−Ti

)
if Nt ≥ 1,

0 otherwise.

2.2 Estimation principle

Remember that our data are independent observa-
tions of random vectors

(
Ntj ,Ztj

)
1≤j≤m, possibly

censored, where the number of inspections m and
the inspection times tj depend on the component.
It is possible to obtain the joint distribution of(
Ntj ,Ztj

)
1≤j≤m by a recursive formula. However this

formula is too tricky to be used with the usual max-
imum likelihood principle. We consequently suggest
another method, based on a two-step procedure.

Let us recall that the parameters to be estimated are:

• Parameter(s) of the Poisson process: θP = λ
(HP) or θP = (α,β) (NHP),

• Parameters of the Gamma process: θG = (a, b)
(HG) or θG = (η, γ, b) (NHG).

As a first step, we classically estimate the parame-
ter θP of the Poisson process by the usual maximum
likelihood method, based on the uncensored obser-
vation of

(
Ntj

)
1≤j≤mand on the joint distribution of(

Ntj

)
1≤j≤m (which is easy to get). The estimator is

denoted by θ̂P .
As a second step, the parameter of the Gamma

processes are next estimated, plugging the estimator
of the Poisson parameter into some composite like-
lihood function (see Cox & Reid (2004) and Varin,
Reid, & Firth (2011)), based on the conditional distri-
bution of the Ztj ’s given Ntj ’s. More specifically, we
consider the following composite likelihood:

L
(
θG| (zj)1≤j≤m , (nj)1≤j≤m ; θ̂P

)
=

∏
1≤j≤m
s.t. nj≥1

fZtj |Ntj

(
zj|nj; θG, θ̂P

)
,

where fZtj |Ntj

(
zj|nj; θG, θ̂P

)
is the conditional p.d.f.

of Ztj given that Ntj = nj with respect to Lebesgue

measure for nj ≥ 1, and where θP is replaced by θ̂P .
Observations for which nj = 0 do not contain any

information on θG becauseNtj = 0 implies that Ztj =
0. That is why only data such that nj ≥ 1 are involved
in the likelihood function.

In practice, N independent components are ob-
served. Adding exponent (i) to both processes and
observations related to the i-th component, the log-
composite-likelihood can be written as

L
(
θG|z,n, t; θ̂P

)

=
N∑
i=1

∑
1≤j≤m(i)

s.t. n
(i)
j ≥1

log

{
fZ

t
(i)
j

|N
t
(i)
j

(
z
(i)
j |n

(i)
j ; θG, θ̂P

)}

where z =
(
z
(i)
j

)
1≤j≤m(i)

1≤i≤N
, n =

(
n
(i)
j

)
1≤j≤m(i)

1≤i≤N
and

t =
(
t
(i)
j

)
1≤j≤m(i)

1≤i≤N
.



If in addition we take into account censoring, we
get:

L
(
θG|u,n, t,d; θ̂P

)
(1)

=
N∑
i=1

∑
1≤j≤m(i)

s.t. n
(i)
j ≥1

d
(i)
j log

{
fZ

t
(i)
j

|N
t
(i)
j

(
u
(i)
j |n

(i)
j ; θG, θ̂P

)}

+
(

1− d(i)j
)

log

{
FZ

t
(i)
j

|N
t
(i)
j

(
u
(i)
j |n

(i)
j ; θG, θ̂P

)}
with u

(i)
j = z

(i)
j if d

(i)
j = 1 and u

(i)
j = c

(i)
j otherwise,

and d =
(
d
(i)
j

)
1≤j≤m(i)

1≤i≤N
.

2.3 Fitting the Poisson process

Parameter θP of the Poisson process can be estimated
from data (n, t) by maximizing the log-likelihood
function:

L (θP |t,n) =
N∑
i=1

log
[
P
(
∩m(i)

j=1

{
N
t
(i)
j

= n
(i)
j

})]
.

Using the independent increments of (Nt)t≥0, we
easily get:

log
[
P
(
∩mj=1

{
Ntj = nj

})]
∝ −Λ (tm) +

m−1∑
j=0

(nj+1 − nj) log (Λ (tj+1)−Λ (tj))

for all 0 = t0 < t1 < · · · < tm and 0 = n0 ≤ n1 ≤
· · · ≤ nm, where ∝ means "is equal to" up to an addi-
tive constant independent of the parameter of interest
(here θP ).

The log-likelihood can then be written as

L (θP |t,n) ∝ −
N∑
i=1

Λ
(
t
(i)

m(i)

)
+

N∑
i=1

m(i)−1∑
j=0

(
n
(i)
j+1 − n

(i)
j

)
log
(

Λ
(
t
(i)
j+1

)
−Λ

(
t
(i)
j

))
,

where we set t
(i)
0 = n

(i)
0 = 0, for all 1≤ i≤N . section

2.3 :
In case of a non homogeneous Poisson process, we

have Λ (t) = αtβ and θP = (α,β). Fixing β and solv-

ing ∂L
∂α

(α,β|t,n) = 0, leads to

α(β) =

∑N
i=1 n

(i)

m(i)∑N
i=1

(
t
(i)
m

)β . (2)

We replace α by α(β) in the likelihood function, and

then we look for the maximizer β̂ of

L (β|t,n) ≡ L (α(β), β|t,n) (3)

∝ −
(

N∑
i=1

n
(i)

m(i)

)
log

(
N∑
i=1

(
t
(i)

m(i)

)β)

+
N∑
i=1

m(i)−1∑
j=0

(
n
(i)
j+1 − n

(i)
j

)
log

((
t
(i)
j+1

)β
−
(
t
(i)
j

)β)
.

Using a numerical optimization method, we first

obtain β̂; then we set α̂ = α(β̂).

The homogeneous case (Λ (t) = λt) is a particular
case of the NHP case with β = 1 and α = λ. Thus
from (2), we obtain

λ̂ =

∑N
i=1 n

(i)

m(i)∑N
i=1 t

(i)

m(i)

.

2.4 Fitting the Gamma process

The parameter θG of the Gamma process is estimated
from (u,n, t,d) by maximizing the log-composite-
likelihood function given by (1). First we show that
for n ≥ 1 and z > 0:

P (Zt ≤ z|Nt = n) =

{∫ t
0
FA(y),b (z)λ (t− y)dy

Λ (t)

}n

(4)

and

fZt|Nt (z|n) =
n

Λ (t)n

{∫ t

0

fA(y),b (z)λ (t− y)dy

}

×
{∫ t

0

FA(y),b (z)λ (t− y)dy

}n−1
. (5)

(Details are not provided here, due to the reduced size
of the paper).

Setting λ̂(t) = λ(t; θ̂P ) and plugging formulae (4)
and (5) into (1), we obtain

L
(
θG|u,n, t,d; θ̂P

)
∝ (6)

N∑
i=1

∑
1≤j≤m(i)

s.t. n
(i)
j ≥1

[
d
(i)
j log

(∫ t
(i)
j

0
fA(y),b

(
u
(i)
j

)
λ̂
(
t
(i)
j − y

)
dy

)

+
(
n
(i)
j − d

(i)
j

)
log

(∫ t
(i)
j

0
FA(y),b

(
u
(i)
j

)
λ̂
(
t
(i)
j − y

)
dy

)]
.



In case of a homogeneous Gamma process,A (y) is
replaced by ay in (6). Parameters (a, b) are estimated

by (â, b̂) which maximizes L
(
a, b|u,n, t,d; θ̂P

)
.

In case of a non homogeneous Gamma process,
A (y) is replaced by ηyγ in (6). Parameters

(η, γ, b) are estimated by
(
η̂, γ̂, b̂

)
which maximizes

L
(
η, γ, b|u,n, t,d; θ̂P

)
.

3 MONTE CARLO STUDY

This section is devoted to a simulation study which
aims at checking the validity of our estimation
method. The next section deals with our application
to the real data from EDF. As we will see, EDF data
are well fitted by combining the NHP process with
the HG process. That is why the present section is de-
voted to this specific model, which we denote by NHP
& HG.

Parameters of the NHP process with cumulative in-
tensity Λ (t) = αtβ are fixed to (α,β) = (1,1.5). Para-
meters of the HG process are fixed to (a, b) = (1,2).
Samples are generated according to the NHP & HG
model. Two setups are tested:

• we generate samples of size n = 228, with iden-
tical inspection times as those of the 228 EDF
components, up to a multiplicative constant.

• we generate samples of size n = 4× 228 = 912;
the inspection times of the 228 EDF components
are used four times each (with the same multi-
plicative constant).

In order to be as close as possible from the EDF
data, the cracks sizes are censored. More specifically,
if the largest simulated crack is smaller than 0.2 by an

inspection, then its size is put to 0.2 (u
(i)
j = 0.2) and

the censoring indicator is put to 0, indicating a censor

(d
(i)
j = 0).

A point of interest for the industrial study was also
to know whether it was worth taking into account cen-
soring. That is why two different estimations are per-
formed. First, we estimate the unknown parameters
without taking into account censoring. This means
that censoring levels are considered to be observed
measurements, or equivalently, that censoring values
represent crack sizes at observation times. Of course,
this leads to an over-estimation of the cracks sizes.
However, this does not infer on the number of cracks
at observation times and consequently does not infer
on the estimation procedure of the Poisson parameter.
In a second step, all parameters are estimated taking
into account censoring.

3.1 Estimation without taking into account

censoring

We use the log-composite-likelihood function (6)

with all d
(i)
j ’s equal to 1. Results are provided in Ta-

ble 1. As for the parameters of the NHP process, we
observe that, as expected, they are well estimated,
both from a bias and standard deviation point of view.
Also, all confidence intervals contain the true values
of the parameters.

The results concerning the HG process are less con-
vincing. Indeed, even if empirical means are not too
far from their true values, we can see that there is
some bias on the estimates of parameters a and b, and
also on the mean rates per unit time for both mean
(a/b) and variance (a/b2). As a matter of fact, confi-
dence intervals do not always contain the true values,
especially when the sample size is large (n= 912). As
will be seen later on, this bias is a simple consequence
of the censoring procedure which over-estimates the
cracks sizes and which is not taken in consideration
here. As a consequence, fitting the model using over-
estimated cracks sizes is not convenient. Note how-
ever that standard deviations are divided by two when
the sample size is multiplied by four, which is an in-
dicator of a normal asymptotic behaviour, that is of a
"good" behaviour.

3.2 Estimation without taking into account

censoring

The quality of estimation results (see Table 2) is good
for both processes (NHP and HG). Bias on the HG
process parameters almost disappear. Confidence in-
tervals are well centered on the true parameters values
and standard deviations are divided by two as the sam-
ple size is multiplied by four. Obviously, it is prefer-
able to take censoring into consideration, even though
the impact remains moderate.

4 INDUSTRIAL CASE STUDY

EDF data concern N = 228 components. Each com-
ponent has been inspected several times. The total
number of inspection times is 1695. Our approach re-
quires both numerical integration and numerical opti-
mization for the computation and optimization of the
log-composite-likelihood function provided by (6).
To validate the numerical results, two different com-
puter programs are used, one written with R (R Core
Team (2013)), the other one with MATLAB (MATLAB
(2010)). The two programs provide very similar re-
sults. In addition, confidence intervals are computed
via standard bootstrap method, using 1000 sets of
228 trajectories uniformly drawn (with replacement)
from the 228 trajectories of our data set. For each
bootstrap sample, estimates are provided for the para-
meters. Empirical mean, standard-deviation and both
90% and 95% confidence intervals are next derived



for each parameter, based on the 1000 estimation re-
sults. The 90% (resp. 95%) confidence interval corre-
sponds to [q0.05, q0.95] (resp. [q0.025, q0.975]), where qα
is the α-empirical-quantile of the 1000 estimation re-
sults. As often, this method is quite time consuming.
Note that, based on the strong evidence provided by
the Monte Carlo study for taking into account censor-
ing, all the results of this section are computed under
this basis.

4.1 Crack initiation process

Estimation results concerning the Poisson process
(HP or NHP) are given in Table 3. The results ob-
tained by the bootstrap method are summarized in Ta-
ble 4.

Table 3: Estimation results for the Poisson process

Model Estimates

HP
λ̂

1.5634× 10−4

NHP
α̂ β̂

1.2267× 10−9 2.2811

Table 5 gives the expected annual number of new

cracks. For the HP process, it is equal to λ̂ × 365
whereas for the NHP process it is equal to α̂ ×{

(365 i)β̂ − (365 (i− 1))β̂
}

for the i-th year (data

unit is day).
Based on empirical considerations and on the boot-

strap confidence interval provided in Table 4 for pa-
rameter β, we suggest to retain the non homogenous
version of the Poisson process (NHP) to model cracks
initiation times.

Table 5: Annual mean number of new cracks.

Model
Annual mean number

of new cracks

HP 5.71× 10−2

NHP

Year 1 8.58× 10−4
Year 2 3.31× 10−3
Year 3 6.35× 10−3
Year 4 9.76× 10−3
Year 5 1.35× 10−2
Year 6 1.74× 10−2
Year 8 2.59× 10−2
Year 10 3.50× 10−2
Year 12 4.47× 10−2
Year 15 6.02× 10−2

4.2 Crack propagation process

Estimation results are given in Table 6 for the para-
meters of both HG and NHG processes. The results
obtained by the bootstrap method are summarized in
Table 7 for the parameters of the Gamma processes
for the NHP & HG model.

Table 8 provides the annual mean crack growth.
As we can see, in case of a NHG process, the crack

Table 6: Estimation results on EDF data including censoring

Model Estimates

HP & HG
â b̂

2.4354× 10−4 7.9669× 10−2

NHP & HG
â b̂

4.8635× 10−4 9.8412× 10−2

HP & NHG
η̂ γ̂ b̂

0.46800 9.2245× 10−9 4.0301× 10−2

NHP & NHG
η̂ γ̂ b̂

0.35744 2.2407× 10−10 3.2708× 10−2

Table 8: Expected annual growth of a crack from EDF data

Model Annual mean of crack growth

HP & HG 1.1158

NHP & HG 1.8038

HP & NHG
Year 1 11.61

Year 2 7.43× 10−8

NHP & NHG
Year 1 10.93
Year 2 1.70× 10−9

growth is strongly non-linear. Based on empirical
considerations, we hence suggest to retain the homo-
geneous version of the Gamma process (combined
with an NHP process). However, this point requires
further investigation. For example, a bootstrap confi-
dence interval for the unknown parameter γ could be
calculated in order to test the null hypothesis γ = 1
(meaning that the Gamma process is homogeneous).
We can use the same bootstrap method as for the NHP
& HG model but we have to face the problem of very
large calculation time for such an approach.

4.3 Additional indicators

Apart from the previously mentioned indicators (an-
nual mean number of new cracks, annual mean crack
growth), other indicators of interest for the applica-
tions are linked to the hitting time τ ` of the criti-
cal degradation level ` > 0, defined by τ ` = inf{t >
0;Zt ≥ `}. As an example, we are here interested
in the quantile tα of the reaching time τ ` (where
α ∈ (0,1)), which is such that:

P (τ ` < tα) = α,

or equivalently such that:

P (Ztα > `) = α.

For the NHP & NHG model (the most general), this
equation may be written as:∫ tα

0

F̄A(y),b (`)λ (tα − y)dy = − ln (1− α) ,

where F̄A(y),b (`) = 1− FA(y),b (`).
For the NHP & HG model, we have to solve nu-

merically the following equation:∫ tα

0

F̄ay,b (`) (tα − y)β−1 dy = − ln (1− α)

αβ
. (7)



Table 1: Monte Carlo estimations for the NHP-HG model based on K simulated censored samples of size n, without considering
censoring.

n K a b a/b a/b2 α β
value 1 2 0.5 0.25 1 1.5

228 1000 1.125 2.199 0.511 0.234 0.999 1.500
mean 912 108 1.115 2.184 0.511 0.234 1.000 1.500

228 1000 0.110 0.182 0.011 0.017 0.046 0.019
stand. err. 912 108 0.056 0.091 0.006 0.008 0.023 0.010

90% confidence 228 1000 [0.953,1.313] [1.921,2.522] [0.493,0.529] [0.206,0.260] [1.170,1.346] [1.469,1.530]
interval 912 108 [1.032,1.219] [2.041,2.352] [0.500,0.521] [0.211,0.247] [0.963,1.038] [1.484,1.516]

95% confidence 228 1000 [0.928,1.358] [1.862,2.588] [0.490,0.532] [0.201,0.267] [1.156,1.365] [1.462,1.536]
interval 912 108 [1.074,1.230] [2.118,2.367] [0.506,0.521] [0.229,0.247] [0.985,1.040] [1.494,1.521]

Table 2: Monte Carlo estimations for the NHP-HG model based on K simulated censored samples of size n considering censoring.

n K a b a/b a/b2 α β
value 1 2 0.5 0.25 1 1.5

228 825 1.000 2.040 0.503 0.248 0.998 1.501
mean 912 231 1.007 2.011 0.501 0.249 1.000 1.500

228 825 0.100 0.168 0.011 0.017 0.043 0.018
stand. err. 912 231 0.049 0.083 0.006 0.009 0.022 0.009

90% confidence 228 825 [0.878,1.205] [1.787,2.347] [0.484,0.521] [0.219,0.276] [0.929,1.071] [1.471,1.532]
interval 912 231 [0.922,1.084] [1.874,2.141] [0.491,0.509] [0.234,0.265] [0.962,1.035] [1.485,1.515]

95% confidence 228 825 [0.852,1.237] [1.746,2.397] [0.481,0.524] [0.212,0.281] [0.912,1.086] [1.466,1.537]
interval 912 231 [0.910,1.093] [1.846,2.156] [0.489,0.511] [0.233,0.267] [0.953,1.042] [1.480,1.518]

Table 4: Results based on 1000 bootstrapped samples of size 228 for the parameters of the Poisson process.

λ̂ α̂ β̂
mean 1.568× 10−4 2.121× 10−9 2.289
stand. err. 1.687× 10−5 2.775× 10−9 0.130
90% conf. int.

[
1.309× 10−4,1.845× 10−4

] [
1.604× 10−10,7.026× 10−9

]
[2.081,2.511]

95% conf. int.
[
1.275× 10−4,1.914× 10−4

] [
1.176× 10−10,1.012× 10−8

]
[2.041,2.550]

Table 7: Results based on 1000 bootstrapped samples of size 228 for the parameters of the Gamma process, case PNH & GH.

â b̂ â/b̂ â/b̂2

mean 5.8887× 10−4 0.11472 4.9527× 10−3 4.8829× 10−2
stand. err. 1.0881× 10−3 0.16965 5.1462× 10−4 1.1652× 10−2
90% conf. int. [2.8948,9.8237]× 10−4

[
6.6464× 10−2,0.17594

]
[4.1185,5.7648]× 10−3 [3.0292,6.8574]× 10−2

95% conf. int. [2.5470,11.644]× 10−4
[
6.0923× 10−2,0.20922

]
[3.9469,5.9619]× 10−3 [2.6929,7.2000]× 10−2



Table 9: Estimated α-quantiles tα of the hitting time τ `

α 0.25 0.50 0.75 0.90 0.95
tα 420.48 443.08 480.20 525.54 619.19
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Figure 1: Quantile function α 7→ tα of the hitting time τ `

For a fixed level `, estimation results are obtained

by substituting (α,β, a, b) by (α̂, β̂, â, b̂) in (7) and
then solving equation (7) with respect to tα. Results
are provided in Table 9 and Figure 1.

5 CONCLUDING REMARKS

We proposed a stochastic model for the bivariate
process (Nt,Zt)t≥0 describing initiation and growth
of cracks on a passive component from EDF elec-
tric power plants. This model associates a Poisson
process together with a Gamma process, where both
processes may be homogeneous or not. This leads to
four different models, which have been fitted to EDF
data. The finally retained model is based on a boot-
strap confidence interval for the shape parameter of
the non homogeneous Poisson process and on empiri-
cal considerations for the Gamma process. It is a com-
bination of a NHP process for apparition of cracks
and a HG process for describing cracks growth. This
point however requires further investigation. Indeed,
selecting one model is a challenging statistical objec-
tive, that requires to use some information criteria like
AIC, BIC, etc. that have to be adapted to our estima-
tion method, which is based on composite likelihood
method instead of classical likelihood approach (see
Gao & Song (2010) for some recent results concern-
ing BIC selection model criteria for composite likeli-
hood approach).

The Monte Carlo simulation study shows that the
sample size of the EDF data is sufficient to guarantee
the quality of estimation results, except maybe for the
parameter α of the NHP process which has a rather
large estimated standard deviation. This study also
shows that taking into account censoring is necessary
to avoid some bias on estimates of the Gamma process
parameters. This bias disappears when an estimation

method taking into account censoring is used.
Another challenging statistical issue would be to

integrate measurement errors in our model. There are
two levels of possible errors of measurement. The first
level deals with the number of cracks, where typically,
too small cracks may remain unrevealed by the test-
ing processes. The second level is linked to the sizing
process, which may be spoiled by measurement er-
rors.
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